Publications
Click paper titles to access the full text (links open in a new window).
Jimenez AM, Riedel P, Lee J, Reavis EA, Green MF (In Press). Linking Resting State Networks and Social Cognition in Schizophrenia and Bipolar Disorder. Human Brain Mapping.
Reddy LF, Irwin MR, Breen EC, Reavis EA, Green MF (2019). Social exclusion in schizophrenia: Psychological and cognitive consequences. Journal of Psychiatric Research. 114:120-125. doi: 10.1016/j.jpsychires.2019.04.010
Lee J, Reavis EA, Engel SA, Altshuler LL, Cohen MS, Glahn DC, Nuechterlein KH, Wynn JK, Green MF (2019). fMRI evidence of aberrant neural adaptation for objects in schizophrenia and bipolar disorder. Human Brain Mapping. 40(5):1608-1617. doi: 10.1002/hbm.24472
Wynn JK, Green MF, Hellemann G, Reavis EA, & Marder SR (2019). A dose-finding study of oxytocin using neurophysiological measures of social processing. Neuropsychopharmacology. 44(2):289-294. doi: 10.1038/s41386-018-0165-y
Lee J, Jimenez AM, Reavis EA, Horan WP, Wynn JK, & Green MF (2019). Reduced neural sensitivity to social versus nonsocial reward in schizophrenia. Schizophrenia Bulletin. 45(3): 620–628. doi: 10.1093/schbul/sby109.
Cox MA, Dougherty K, Adams GK, Reavis EA, Westerberg JA, Moore BS, Leopold DA, & Maier A (2019). Spiking suppression precedes cued attentional enhancement of neural responses in primary visual cortex. Cerebral Cortex. 29(1):77-90. doi: 10.1093/cercor/bhx305
Reavis EA, Frank SM, & Tse PU (2018). Learning efficient visual search for stimuli containing diagnostic spatial configurations and color-shape conjunctions. Attention, Perception, & Psychophysics, 80(5): 1110-1126. doi: 10.3758/s13414-018-1516-9
Reddy LF, Reavis EA, Wynn JK, & Green MF (2018). Pupillary responses to a cognitive effort task in schizophrenia. Schizophrenia Research, 199: 53-57. doi: 10.1016/j.schres.2018.03.005
Jimenez AM, Lee J, Reavis EA, Wynn JK, & Green MF (2018). Aberrant patterns of neural activity when perceiving emotion from biological motion in schizophrenia. NeuroImage: Clinical, 20: 380-387. doi: 10.1016/j.nicl.2018.08.014
Reavis EA, Lee J, Wynn JK, Engel SA, Cohen MS, Nuechterlein KH, Glahn DC, Altshuler LL, Green MF (2017). Assessing neural tuning for object perception in schizophrenia and bipolar disorder with multivariate pattern analysis of fMRI data. NeuroImage: Clinical, 16: 491-497. doi: 10.1016/j.nicl.2017.08.023
Reavis EA, Lee J, Wynn JK, Narr KL, Njau SN, Engel SA, & Green MF (2017). Linking optic radiation volume to visual perception in schizophrenia and bipolar disorder. Schizophrenia Research. doi: 10.1016/j.schres.2017.03.027
Reavis EA, Lee J, Wynn JK, Engel SA, Jimenez A, & Green MF (2017). Cortical thickness of functionally-defined visual areas in schizophrenia and bipolar disorder. Cerebral Cortex, 27(5): 2984–2993. doi: 10.1093/cercor/bhw151
Reavis EA*, Frank SM*, Greenlee MW, & Tse PU (2016). Neural correlates of context-dependent feature-conjunction learning in visual search tasks. Human Brain Mapping, 37(6): 2319–2330. doi: 10.1002/hbm.23176 *Equal contributions
Frank SM, Reavis EA, Tse PU, & Greenlee MW (2016). Pretraining cortical thickness predicts subsequent perceptual learning rate in a visual search task. Cerebral Cortex, 26(3): 1211-1220. doi: 10.1093/cercor/bhu309
Jimenez A, Lee J, Wynn JK, Cohen MS, Engel SA, Glahn DC, Nuechterlein KH, Reavis EA, & Green MF (2016). Abnormal ventral and dorsal attention network activity during single and dual target detection in schizophrenia. Frontiers in Psychology, 7: 323. doi: 10.3389/fpsyg.2016.00323
Reavis EA, Frank SM, & Tse PU (2015). Caudate nucleus reactivity predicts perceptual learning rate for visual feature conjunctions. NeuroImage, 110: 171-181. doi: 10.1016/j.neuroimage.2015.01.051
Frank SM*, Reavis EA*, Tse PU, & Greenlee MW (2014). Neural mechanisms of feature conjunction learning: Enduring changes in occipital cortex after a week of training. Human Brain Mapping, 35(4): 1201-1211. doi: 10.1002/hbm.22245 *Equal contributions
Reavis EA, Kohler PJ, Caplovitz GP, Wheatley TP, & Tse PU (2013). Effects of attention on visual experience during monocular rivalry. Vision Research, 83: 76-81. doi: 10.1016/j.visres.2013.03.002
Kohler PJ, Fogelson SV, Reavis EA, Meng M, Guntupalli JS, Hanke M, Halchenko YO, Connoly AC, Haxby JV, & Tse PU (2013). Pattern classification precedes region-average hemodynamic response in early visual cortex. NeuroImage, 78, 249-260. doi: 10.1016/j.neuroimage.2013.04.019
Tse PU, Reavis EA, Kohler PJ, Caplovitz GP, & Wheatley TP (2013). How attention can alter appearances. In L. Albertazzi (ed.), The Wiley-Blackwell Handbook of Experimental Phenomenology: Visual Perception of Shape, Space and Appearance (pp. 291-316). Chichester, England: John Wiley & Sons.
Additional publications are pending; please contact me for details.
Last updated: July 8, 2019.
Jimenez AM, Riedel P, Lee J, Reavis EA, Green MF (In Press). Linking Resting State Networks and Social Cognition in Schizophrenia and Bipolar Disorder. Human Brain Mapping.
Reddy LF, Irwin MR, Breen EC, Reavis EA, Green MF (2019). Social exclusion in schizophrenia: Psychological and cognitive consequences. Journal of Psychiatric Research. 114:120-125. doi: 10.1016/j.jpsychires.2019.04.010
Lee J, Reavis EA, Engel SA, Altshuler LL, Cohen MS, Glahn DC, Nuechterlein KH, Wynn JK, Green MF (2019). fMRI evidence of aberrant neural adaptation for objects in schizophrenia and bipolar disorder. Human Brain Mapping. 40(5):1608-1617. doi: 10.1002/hbm.24472
Wynn JK, Green MF, Hellemann G, Reavis EA, & Marder SR (2019). A dose-finding study of oxytocin using neurophysiological measures of social processing. Neuropsychopharmacology. 44(2):289-294. doi: 10.1038/s41386-018-0165-y
Lee J, Jimenez AM, Reavis EA, Horan WP, Wynn JK, & Green MF (2019). Reduced neural sensitivity to social versus nonsocial reward in schizophrenia. Schizophrenia Bulletin. 45(3): 620–628. doi: 10.1093/schbul/sby109.
Cox MA, Dougherty K, Adams GK, Reavis EA, Westerberg JA, Moore BS, Leopold DA, & Maier A (2019). Spiking suppression precedes cued attentional enhancement of neural responses in primary visual cortex. Cerebral Cortex. 29(1):77-90. doi: 10.1093/cercor/bhx305
Reavis EA, Frank SM, & Tse PU (2018). Learning efficient visual search for stimuli containing diagnostic spatial configurations and color-shape conjunctions. Attention, Perception, & Psychophysics, 80(5): 1110-1126. doi: 10.3758/s13414-018-1516-9
Reddy LF, Reavis EA, Wynn JK, & Green MF (2018). Pupillary responses to a cognitive effort task in schizophrenia. Schizophrenia Research, 199: 53-57. doi: 10.1016/j.schres.2018.03.005
Jimenez AM, Lee J, Reavis EA, Wynn JK, & Green MF (2018). Aberrant patterns of neural activity when perceiving emotion from biological motion in schizophrenia. NeuroImage: Clinical, 20: 380-387. doi: 10.1016/j.nicl.2018.08.014
Reavis EA, Lee J, Wynn JK, Engel SA, Cohen MS, Nuechterlein KH, Glahn DC, Altshuler LL, Green MF (2017). Assessing neural tuning for object perception in schizophrenia and bipolar disorder with multivariate pattern analysis of fMRI data. NeuroImage: Clinical, 16: 491-497. doi: 10.1016/j.nicl.2017.08.023
Reavis EA, Lee J, Wynn JK, Narr KL, Njau SN, Engel SA, & Green MF (2017). Linking optic radiation volume to visual perception in schizophrenia and bipolar disorder. Schizophrenia Research. doi: 10.1016/j.schres.2017.03.027
Reavis EA, Lee J, Wynn JK, Engel SA, Jimenez A, & Green MF (2017). Cortical thickness of functionally-defined visual areas in schizophrenia and bipolar disorder. Cerebral Cortex, 27(5): 2984–2993. doi: 10.1093/cercor/bhw151
Reavis EA*, Frank SM*, Greenlee MW, & Tse PU (2016). Neural correlates of context-dependent feature-conjunction learning in visual search tasks. Human Brain Mapping, 37(6): 2319–2330. doi: 10.1002/hbm.23176 *Equal contributions
Frank SM, Reavis EA, Tse PU, & Greenlee MW (2016). Pretraining cortical thickness predicts subsequent perceptual learning rate in a visual search task. Cerebral Cortex, 26(3): 1211-1220. doi: 10.1093/cercor/bhu309
Jimenez A, Lee J, Wynn JK, Cohen MS, Engel SA, Glahn DC, Nuechterlein KH, Reavis EA, & Green MF (2016). Abnormal ventral and dorsal attention network activity during single and dual target detection in schizophrenia. Frontiers in Psychology, 7: 323. doi: 10.3389/fpsyg.2016.00323
Reavis EA, Frank SM, & Tse PU (2015). Caudate nucleus reactivity predicts perceptual learning rate for visual feature conjunctions. NeuroImage, 110: 171-181. doi: 10.1016/j.neuroimage.2015.01.051
Frank SM*, Reavis EA*, Tse PU, & Greenlee MW (2014). Neural mechanisms of feature conjunction learning: Enduring changes in occipital cortex after a week of training. Human Brain Mapping, 35(4): 1201-1211. doi: 10.1002/hbm.22245 *Equal contributions
Reavis EA, Kohler PJ, Caplovitz GP, Wheatley TP, & Tse PU (2013). Effects of attention on visual experience during monocular rivalry. Vision Research, 83: 76-81. doi: 10.1016/j.visres.2013.03.002
Kohler PJ, Fogelson SV, Reavis EA, Meng M, Guntupalli JS, Hanke M, Halchenko YO, Connoly AC, Haxby JV, & Tse PU (2013). Pattern classification precedes region-average hemodynamic response in early visual cortex. NeuroImage, 78, 249-260. doi: 10.1016/j.neuroimage.2013.04.019
Tse PU, Reavis EA, Kohler PJ, Caplovitz GP, & Wheatley TP (2013). How attention can alter appearances. In L. Albertazzi (ed.), The Wiley-Blackwell Handbook of Experimental Phenomenology: Visual Perception of Shape, Space and Appearance (pp. 291-316). Chichester, England: John Wiley & Sons.
Additional publications are pending; please contact me for details.
Last updated: July 8, 2019.